Unsupervised statistical concept drift detection for behaviour abnormality detection
نویسندگان
چکیده
Abstract Abnormal behaviour can be an indicator for a medical condition in older adults. Our novel unsupervised statistical concept drift detection approach uses variational autoencoders estimating the parameters hypothesis test abnormal days. As feature, Kullback–Leibler divergence of activity probability maps derived from power and motion sensors were used. We showed general feasibility (min. F 1 -Score 91 %) on artificial dataset four types. Then we applied our new method to real–world collected homes 20 (pre–)frail adults (avg. age 84.75 y). was able find days when participant suffered severe condition.
منابع مشابه
Concept drift detection in event logs using statistical information of variants
In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملExploring Concept Representations for Concept Drift Detection
We present an approach to estimating concept drift in online news. Our method is to construct temporal concept vectors from topicannotated news articles, and to correlate the distance between the temporal concept vectors with edits to the Wikipedia entries of the concepts. We find improvements in the correlation when we split the news articles based on the amount of articles mentioning a concep...
متن کاملAdaptive Concept Drift Detection
Concept drift is an important problem in the context of machine learning and data mining. It can be described as a change in the fundamental concepts underlying the data, or, in its most basic form, as a significant change in the distribution of the data. From a learning theoretic point of view, one can say that concept drift is a violation of the i.i.d. assumption, which states that each examp...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2022
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-022-03611-3