Unsupervised feature learning-based encoder and adversarial networks

نویسندگان

چکیده

Abstract In this paper, we propose a novel deep learning-based feature learning architecture for object classification. Conventionally, methods are trained with supervised But, would require large amount of training data. Currently there increasing trends to employ unsupervised learning. By doing so, dependency on the availability data could be reduced. One implementation is where network designed “learn” features automatically from obtain good representation that then used Autoencoder and generative adversarial networks (GAN) examples methods. For GAN however, trajectories may go unpredicted directions due random initialization, making it unsuitable To overcome this, hybrid encoder convolutional (DCGAN) architectures, variant GAN, proposed. Encoder put top Generator avoid initialisation. We called our method as EGAN. The output EGAN two neural (DCNNs): AlexNet DenseNet. evaluate proposed three types dataset results indicate better performances achieved by compared using autoencoder GAN.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Generator-Encoder Networks

We present a new autoencoder-type architecture that is trainable in an unsupervised mode, sustains both generation and inference, and has the quality of conditional and unconditional samples boosted by adversarial learning. Unlike previous hybrids of autoencoders and adversarial networks, the adversarial game in our approach is set up directly between the encoder and the generator, and no exter...

متن کامل

Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

In this paper we present a method for learning a discriminative classifier from unlabeled or partially labeled data. Our approach is based on an objective function that trades-off mutual information between observed examples and their predicted categorical class distribution, against robustness of the classifier to an adversarial generative model. The resulting algorithm can either be interpret...

متن کامل

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adve...

متن کامل

Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones...

متن کامل

Adversarial Feature Learning

The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing generators learn to “linearize semantics” in the latent space of such models. Intuitively, such latent spaces may serve as useful feature representation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Big Data

سال: 2021

ISSN: ['2196-1115']

DOI: https://doi.org/10.1186/s40537-021-00508-9