Universal Quantized Spin-Hall Conductance Fluctuation in Graphene
نویسندگان
چکیده
منابع مشابه
Universal quantized spin-Hall conductance fluctuation in graphene.
We report theoretical investigations of the quantized spin-Hall conductance fluctuation of graphene in the presence of disorder. Two graphene models that exhibit the quantized spin-Hall effect (QSHE) are analyzed. Model I is with unitary symmetry under an external magnetic field B not = 0 but with a zero spin-orbit interaction, t(SO)=0. Model II is with symplectic symmetry where B=0 but t(SO) n...
متن کاملUniversal spin-Hall conductance fluctuations in two dimensions.
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuat...
متن کاملHall conductance in graphene with point defects.
We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We inves...
متن کاملUniversal intrinsic spin Hall effect.
We describe a new effect in semiconductor spintronics that leads to dissipationless spin currents in paramagnetic spin-orbit coupled systems. We argue that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic. In the usual case where both spin-orbit split bands are occupied, the...
متن کاملMagnetoresistance in single-layer graphene: weak localization and universal conductance fluctuation studies.
We report measurements of magnetoresistance in single-layer graphene as a function of gate voltage (carrier density) at 250 mK. By examining signatures of weak localization (WL) and universal conductance fluctuations (UCF), we find a consistent picture of phase coherence loss due to electron-electron interactions. The gate dependence of the elastic scattering terms suggests that the effect of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2008
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.101.016804