UNIVERSAL QUADRATIC FORMS AND ELEMENTS OF SMALL NORM IN REAL QUADRATIC FIELDS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Arithmetic on Elements of Small Norm in Quadratic Fields

We describe an algorithm which rapidly computes the coefficients of elements of small norm in quadratic fields modulo a positive integer. Our method requires that an approximation of the natural logarithm of that quadratic field element is known to sufficient accuracy. To demonstrate the efficiency and utility of our method, we apply it to eliminate a number of exceptional cases of a theorem of...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Perfect unary forms over real quadratic fields

Let F = Q( √ d) be a real quadratic field with ring of integers O. In this paper we analyze the number hd of GL1(O)orbits of homothety classes of perfect unary forms over F as a function of d. We compute hd exactly for square-free d ≤ 200000. By relating perfect forms to continued fractions, we give bounds on hd and address some questions raised by Watanabe, Yano, and Hayashi.

متن کامل

Elements of small norm in Shanks' cubic extensions of imaginary quadratic fields

Let k = Q(√−D) be an imaginary quadratic number field with ring of integers Zk and let k(α) be the cubic extension of k generated by the polynomial ft (x) = x3 − (t − 1)x2 − (t + 2)x − 1 with t ∈ Zk . In the present paper we characterize all elements γ ∈ Zk [α] with norms satisfying |Nk(α)/k | ≤ |2t + 1| for |t | ≥ 14. This generalizes a corresponding result by Lemmermeyer and Pethő for Shanks’...

متن کامل

Gonii: Universal Quaternary Quadratic Forms

We continue our study of quadratic forms using Geometry of Numbers methods by considering universal quaternary positive definite integral forms of square discriminant. We give a small multiple theorem for such forms and use it to prove universality for all nine universal diagonal forms. The most interesting case is x2 + 2y2 + 5z2 + 10w2, which required computer calculations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2016

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972715001495