Universal Enveloping Algebras of Lie–Rinehart Algebras as a Left Adjoint Functor

نویسندگان

چکیده

We prove how the universal enveloping algebra constructions for Lie-Rinehart algebras and anchored Lie are naturally left adjoint functors. This provides a conceptual motivation properties these satisfy. As supplement, categorical approach offers new insights into definitions of morphisms, modules over infinitesimal gauge module.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloured quantum universal enveloping algebras

We define some new algebraic structures, termed coloured Hopf algebras, by combining the coalgebra structures and antipodes of a standard Hopf algebra set H, corresponding to some parameter set Q, with the transformations of an algebra isomorphism group G, herein called colour group. Such transformations are labelled by some colour parameters, taking values in a colour set C. We show that vario...

متن کامل

The Isomorphism Problem for Universal Enveloping Algebras of Lie Algebras

Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) ∼= U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.

متن کامل

A universal enveloping for L ∞ - algebras

For any L ∞-algebra L we construct an A ∞-algebra structure on the symmetric coalgebra Sym * c (L) and prove that this structure satifies properties generalizing those of the usual universal enveloping algebra. We also obtain an invariant contracting homotopy one the cobar construction of a symmetric coalgebra, by relating it to the combinatorics of permutahedra and semistandard Young tableaux.

متن کامل

Universal enveloping algebras of Leibniz algebras and (co)homology

The homology of Lie algebras is closely related to the cyclic homology of associative algebras [LQ]. In [L] the first author constructed a "noncommutative" analog of Lie algebra homology which is, similarly, related to Hochschild homology [C, L]. For a Lie algebra g this new theory is the homology of the complex C,(g) ... ~ ~| g|-+ ... ~1 ~ k, whose boundary map d is given by the formula d(gl|1...

متن کامل

Universal Enveloping Algebras of Braided Vector Spaces

Various attempts to find a proper generalization of the notion of Lie algebra associated to a vector space V endowed with a non symmetric braiding c appeared in the literature. In this direction, we introduce and investigate a notion of braided Lie algebra (and the associated universal enveloping algebra) which turns out to be effective for the class of braided vector spaces (V, c) whose Nichol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-01985-9