Universal degeneracy classes for vector bundles on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">P</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math> bundles

نویسندگان

چکیده

Given a vector bundle on P1 bundle, the base is stratified by degeneracy loci measuring splitting type of restricted to each fiber. The classes these in Chow ring or cohomology are natural invariants characterizing degenerations bundle. When occur expected codimension, we find their classes. This yields universal formulas for terms naturally arising bundles base. existence applied prove non-emptiness Brill-Noether [21]. Our results hold over arbitrary fields any characteristic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Equivalence Classes of Complex Vector Bundles

For any complex vector bundle Ek of rank k over a manifold Mm with Chern classes ci ∈ H2i(Mm, Z) and any non-negative integers l1, · · · , lk we show the existence of a positive number p(m, k) and the existence of a complex vector bundle Êk over Mm whose Chern classes are p(m, k) · li · ci ∈ H2i(Mm, Z). We also discuss a version of this statement for holomorphic vector bundles over projective a...

متن کامل

Hodge Style Chern Classes for Vector Bundles on Schemes

In this note, we develop the formalism of Hodge style chern classes of vector bundles over arbitrary quasi-projective schemes defined over K, a field of characteristic zero. The theory of Chern classes is well known by now and without any restriction on the characteristic, can be defined in many theories with rational coefficients, like for example the Chow ring. Atiyah [1] developed the theory...

متن کامل

Chern classes of automorphic vector bundles

1.1. Suppose X is a compact n-dimensional complex manifold. Each partition I = {i1, i2, . . . , ir} of n corresponds to a Chern number c (X) = ǫ(c1(X)∪c2(X)∪. . .∪cr(X)∩[X]) ∈ Z where c(X) ∈ H(X;Z) are the Chern classes of the tangent bundle, [X] ∈ H2n(X;Z) is the fundamental class, and ǫ : H0(X;Z) → Z is the augmentation. Many invariants of X (such as its complex cobordism class) may be expres...

متن کامل

Characteristic Classes of Bad Orbifold Vector Bundles

We show that every bad orbifold vector bundle can be realized as the restriction of a good orbifold vector bundle to a suborbifold of the base space. We give an explicit construction of this result in which the Chen-Ruan orbifold cohomology of the two base spaces are isomorphic (as additive groups). This construction is used to indicate an extension of the Chern-Weil construction of characteris...

متن کامل

Arithmetic Characteristic Classes of Automorphic Vector Bundles

We develop a theory of arithmetic characteristic classes of (fully decomposed) automorphic vector bundles equipped with an invariant hermitian metric. These characteristic classes have values in an arithmetic Chow ring constructed by means of differential forms with certain log-log type singularities. We first study the cohomological properties of log-log differential forms, prove a Poincaré le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107563