Universal criticality of thermodynamic geometry for boundary conformal field theories in gauge/gravity duality

نویسندگان

چکیده

According to more recent AdS/CFT interpretation \cite{Karch:2015rpa}, in which varying cosmological constant $\Lambda$ the bulk corresponds curvature radius governing space on field theory resides, we study criticality of thermodynamic curvatures for thermal boundary conformal theories (CFT) that are dual $d$-dimensional charged anti-de Sitter (AdS) black holes, embedded $D$-dimensional M-theory/superstring inspired models having $AdS_{d}\times \mathbb{S}^{d+k}$ spacetime with $D=2d+k$. Analogous features acquired AdS holes \cite{HosseiniMansoori:2020jrx}, normalized intrinsic $R_N$ and extrinsic $K_N$ CFT has critical exponents 2 1, respectively. In this respect, universal amplitude $R_Nt^2$ is $\frac{1}{2}$ $K_Nt$ $-\frac{1}{2}$ when $t\rightarrow0^-$, whereas $R_Nt^2\approx \frac{1}{8}$ $K_Nt\approx\frac{1}{4}$ limit $t\rightarrow0^+$ $t=T/T_c-1$ temperature parameter temperature, $T_{c}$. Interestingly, these amplitudes independent number dimensions remarkably similar one given higher dimensional bulk.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Langlands Duality and a Duality of Conformal Field Theories

We show that the numerical local Langlands duality for GLn and the T-duality of twodimensional quantum gravity arise from one and the same symmetry principle. The unifying theme is that the local Fourier transform in both its `-adic and complex incarnation gives rise to symmetries of arithmetic and geometric local Langlands parameters.

متن کامل

Boundary Conditions in Rational Conformal Field Theories

We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show that solving Cardy’s equation, expressing consistency of a RCFT on a cylinder, is equivalent to finding integer valued matrix representations of the Verlinde algebra. T...

متن کامل

Boundary states in coset conformal field theories

We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automor-phism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can b...

متن کامل

Exact c=1 boundary conformal field theories.

We present a solution of the problem of a free massless scalar field on the half line interacting through a periodic potential on the boundary. For a critical value of the period, this system is a conformal field theory with a non-trivial and explicitly calculable S-matrix for scattering from the boundary. Unlike all other exactly solvable conformal field theories, it is non-rational (i.e. has ...

متن کامل

Logarithmic Conformal Field Theories Near a Boundary

We consider logarithmic conformal field theories near a boundary and derive the general form of one and two point functions. We obtain results for arbitrary and two dimensions. Application to two dimensional magnetohydrodynamics is discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.105.024058