Universal convex coverings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal convex coverings

In every dimension d ≥ 1, we establish the existence of a positive finite constant vd and of a subset Ud of R d such that the following holds: C + Ud = R d for every convex set C ⊂ R of volume at least vd and Ud contains at most log(r) r points at distance at most r from the origin, for every large r.

متن کامل

On Translative Coverings of Convex Bodies

We introduce and study t-coverings in En, i.e., arrangements of proper translates of a convex body K ⊂ En sufficient to cover K. First, we investigate relations between t-coverings of the whole of K and t-coverings of its boundary only. Refining the notion of t-covering in several ways, we then derive, particularly for centrally symmetric convex bodies and n = 2, theorems which are interesting ...

متن کامل

On pseudo-convex decompositions, partitions, and coverings

We introduce pseudo-convex decompositions, partitions, and coverings for planar point sets. They are natural extensions of their convex counterparts and use both convex polygons and pseudo-triangles. We discuss some of their basic combinatorial properties and establish upper and lower bounds on their complexity.

متن کامل

Convex universal fixers

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V,E) be a graph with n vertices and G a copy of G. For a bijective function π : V (G) → V (G), define the prism πG of G as follows: V (πG) = V (G)∪ V (G) and E(πG) = E(G)∪E(G′)∪Mπ, where Mπ = {uπ(u) | u ∈ V (G)}. Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2009

ISSN: 0024-6093

DOI: 10.1112/blms/bdp076