Universal Accretion Growth Using Sandpile Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality in sandpile models.

A new classification of sandpile models into universality classes is presented. On the basis of extensive numerical simulations, in which we measure an extended set of exponents, the Manna two state model [S. S. Manna, J. Phys. A 24, L363 (1991)] is found to belong to a universality class of random neighbor models which is distinct from the universality class of the original model of Bak, Tang ...

متن کامل

Energy Constrained Sandpile Models

Alessandro Chessa,1,2 Enzo Marinari,1,3 and Alessandro Vespignani4 1Dipartimento di Fisica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy 2Istituto Nazionale di Fisica della Materia (INFM), Sezione di Cagliari, Italy 3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Italy 4International Center for Theoretical Physics (ICTP), P.O. Box 586, 34100 Trieste, Italy ...

متن کامل

Asymmetric Abelian Sandpile Models

In the Abelian sandpile models introduced by Dhar, long-time behavior is determined by an invariant measure supported uniformly on a set of implicitly defined recurrent configurations of the system. Dhar proposed a simple procedure, the burning algorithm, as a possible test of whether a configuration is recurrent, and later with Majumdar verified the correctness of this test when the toppling r...

متن کامل

Two-component Abelian sandpile models.

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models wi...

متن کامل

The Abelian Sandpile and Related Models

The Abelian sandpile model is the simplest analytically tractable model of self-organized criticality. This paper presents a brief review of known results about the model. The abelian group structure of the algebra of operators allows an exact calculation of many of its properties. In particular, when there is a preferred direction, one can calculate all the critical exponents characterizing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the International Astronomical Union

سال: 2015

ISSN: 1743-9213,1743-9221

DOI: 10.1017/s1743921316007778