Uniqueness of mean maximizers via an ergodic theorem
نویسندگان
چکیده
منابع مشابه
On the Mean Ergodic Theorem for Subsequences
With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...
متن کاملSzemerédi’s Theorem via Ergodic Theory
This essay investigates Furstenberg’s proof of Szemerédi’s Theorem. The necessary concepts and results from ergodic theory are introduced, including the Poincaré and Mean Ergodic Theorems which are proved in full. The Ergodic Decomposition Theorem is also discussed. Furstenberg’s Multiple Recurrence Theorem is then stated and shown to imply Szemerédi’s Theorem. The remainder of the essay concen...
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
Application of the Mean Ergodic Theorem to Certain Semigroups
We study the asymptotic behaviour of solutions of the Cauchy problem u′ = (∑n j=1(Aj + A −1 j ) − 2nI ) u, u(0) = x as t → ∞, for invertible isometries A1, . . . , An.
متن کاملA quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Operationsforschung und Statistik. Series Optimization
سال: 1983
ISSN: 0323-3898
DOI: 10.1080/02331938308842873