Unique Factorization in a Principal Right Ideal Domain

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely-generated modules over a principal ideal domain

Let R be a commutative ring throughout. Usually R will be an integral domain and even a principal ideal domain, but these assumptions will be made explicitly. Since R is commutative, there is no distinction between left, right and 2-sided ideals. In particular, for every ideal I we have a quotient ring R/I. F always denotes a field. Our goal is to prove the classification theorem for finitely-g...

متن کامل

Ideal Factorization

which is impossible since the right side is even. The proof that (2, 1− √ −5) 6= (1) is similar. For another proof, complex conjugation is an operation on ideals, a 7→ a := {α : α ∈ a} which respects addition and multiplication of ideals, and (α, β) = (α, β). In particular, the conjugate of (2, 1 + √ −5) is (2, 1− √ −5), so if (2, 1 + √ −5) = (1) then (2, 1− √ −5) = (1), so the product (2, 1 + ...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

A Generalized Principal Ideal Theorem

KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...

متن کامل

Principal Ideal Domains

Last week, Ari taught you about one kind of “simple” (in the nontechnical sense) ring, specifically semisimple rings. These have the property that every module splits as a direct sum of simple modules (in the technical sense). This week, we’ll look at a rather different kind of ring, namely a principal ideal domain, or PID. These rings, like semisimple rings, have the property that every (finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1965

ISSN: 0002-9939

DOI: 10.2307/2034690