Unimodal density estimation using Bernstein polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unimodal density estimation using Bernstein polynomials

The estimation of probability density functions is one of the fundamental aspects of any statistical inference. Many data analyses are based on an assumed family of parametric models, which are known to be unimodal (e.g., exponential family, etc.). Often a histogram suggests the unimodality of the underlying density function. Parametric assumptions, however, may not be adequate for many inferen...

متن کامل

Convergence Rates for Density Estimation with Bernstein Polynomials

Mixture models for density estimation provide a very useful set up for the Bayesian or the maximum likelihood approach. For a density on the unit interval, mixtures of beta densities form a flexible model. The class of Bernstein densities is a much smaller subclass of the beta mixtures defined by Bernstein polynomials, which can approximate any continuous density. A Bernstein polynomial prior i...

متن کامل

Unimodal Kernel Density Estimation by Data Sharpening

We discuss a robust data sharpening method for rendering a standard kernel estimator, with a given bandwidth, unimodal. It has theoretical and numerical properties of the type that one would like such a technique to enjoy. In particular, we show theoretically that, with probability converging to 1 as sample size diverges, our technique alters the kernel estimator only in places where the latter...

متن کامل

Information-theoretic approach to unimodal density estimation

Ex = (I + y / t) (l +. r y / : ') El0 = (1 + ! / / Z) (l + .r2y/:3) all R-multiples of Es. The error positions in this case are (j. 1. l) , In general, when decoding an error relative to an algebraic geometric code C*(D. 7rtP), there is a vector space S (g) l of error-locator functions of dimension Z(m)-e. Most algorithms settle for any element of this space as an error-locator and deal with ex...

متن کامل

Regression estimation based on Bernstein density copulas∗

The regression function can be expressed in term of copula density and marginal distributions. In this paper, we propose a new method of estimating a regression function using the Bernstein estimator for the copula density and the empirical distributions for the marginal distributions. The method is fully non-parametric and easy to implement. We provide some asymptotic results related to this c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2014

ISSN: 0167-9473

DOI: 10.1016/j.csda.2013.10.021