Unifying the Brascamp-Lieb Inequality and the Entropy Power Inequality

نویسندگان

چکیده

The entropy power inequality (EPI) and the Brascamp-Lieb (BLI) are fundamental inequalities concerning differential entropies of linear transformations random vectors. EPI provides lower bounds for vectors with independent components. BLI, on other hand, upper a vector in terms some its transformations. In this paper, we define family functionals, which show subadditive. We then establish that Gaussians extremal these functionals by adapting proof technique from Geng Nair (2014). As consequence, obtain new generalizes both BLI EPI. By considering variety independence relations among components appearing also families lie between BLI.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimisers for the Brascamp–lieb Inequality

We find all optimisers for the Brascamp–Lieb inequality, thus completing the problem which was settled in special cases by Barthe; Carlen, Lieb and Loss; and Bennett, Carbery, Christ and Tao. Our approach to the solution is based on the heat flow methods introduced by the second and third sets of authors above. We present the heat flow method in the form which is most appropriate for our study ...

متن کامل

On a reverse form of the Brascamp-Lieb inequality

We prove a reverse form of the multidimensional Brascamp-Lieb inequality. Our method also gives a new way to derive the Brascamp-Lieb inequality and is rather convenient for the study of equality cases. Introduction We will work on the space R with its usual Euclidean structure. We will denote by 〈, 〉 the canonical scalar product. In [BL], H. J. Brascamp and E. H. Lieb showed that for m ≥ n, p1...

متن کامل

Information-Theoretic Perspectives on Brascamp-Lieb Inequality and Its Reverse

We introduce an inequality which may be viewed as a generalization of both the Brascamp-Lieb inequality and its reverse (Barthe’s inequality), and prove its information-theoretic (i.e. entropic) formulation. This result leads to a unified approach to functional inequalities such as the variational formula of Rényi entropy, hypercontractivity and its reverse, strong data processing inequalities,...

متن کامل

Sum of Square Proof for Brascamp-Lieb Type Inequality

Brascamp-Lieb inequalities [5] is an important mathematical tool in analysis, geometry and information theory. There are various ways to prove Brascamp-Lieb inequality such as heat flow method [4], Brownian motion [11] and subadditivity of the entropy [6]. While Brascamp-Lieb inequality is originally stated in Euclidean Space, [8] discussed Brascamp-Lieb inequality for discrete Abelian group an...

متن کامل

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2022

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2022.3192913