Unifying structural descriptors for biological and bioinspired nanoscale complexes
نویسندگان
چکیده
Biomimetic nanoparticles are known to serve as nanoscale adjuvants, enzyme mimics and amyloid fibrillation inhibitors. Their further development requires better understanding of their interactions with proteins. The abundant knowledge about protein–protein can a guide for designing protein–nanoparticle assemblies, but the chemical biological inputs used in computational packages not applicable inorganic nanoparticles. Analysing chemical, geometrical graph-theoretical descriptors protein complexes, we found that uniformly nanostructures predict interaction sites pairs accuracy >80% classification probability ~90%. We extended machine-learning algorithms trained on nearly exact match between experimental predicted These findings be other organic assemblies biomolecules structures forming lock-and-key complexes. Unified structural features developed, allowing complexes utilized formation pairs.
منابع مشابه
Bioinspired nanoscale materials for biomedical and energy applications.
The demand for green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has tak...
متن کاملsynthesis and characterization of potentially biological active cyclometallated organoplatinum(ii) complexes
this work is presented in five parts. in the first part preparation of the starting complex [pt(c^n)cl(dmso)], 1, in which c^n = n(1),c(2?)-chelated, deprotonated 2-phenylpyridine, and dmso = dimethylsulfoxide, and its reaction with 1 equiv of the biphosphine ligands bis(diphenylphosphino)amine, dppa, or bis(diphenylphosphino)methane, dppm, to give the complex [pt(c^n)cl(dppa)], 2, or [pt(c^n)c...
15 صفحه اولClassification of protein-DNA complexes based on structural descriptors.
We attempt to classify protein-DNA complexes by using a set of 11 descriptors, mainly characterizing protein-DNA interactions, including the number of atomic contacts at major and minor grooves, conformational deviations from standard B- and A-DNA forms, widths of DNA grooves, GC content, specificity measures of direct and indirect readouts, and buried surface area at the complex interface. The...
متن کاملBioinspired structural materials.
Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have prove...
متن کاملRapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications
Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Computational Science
سال: 2022
ISSN: ['2662-8457']
DOI: https://doi.org/10.1038/s43588-022-00229-w