Uniformly normal structure and uniformly generalized Lipschitzian semigroups
نویسندگان
چکیده
منابع مشابه
On Uniformly Generalized Lipschitzian Mappings
We consider another class of generalized Lipschitzian type mappings and utilize the same to prove fixed point theorems for asymptotically regular and uniformly generalized Lipschitzian one-parameter semigroups of self-mappings defined on bounded metric spaces equipped with uniform normal structure which yield corresponding results in respect of semigroup of iterates of a self-mapping as corolla...
متن کاملConvergence of Iterates of Uniformly L-lipschitzian and Generalized Asymptotically Nonexpansive Mappings in Cat(0) Spaces
We study strong and ∆-convergence of a modified S-type iteration process inspired by Agarwal, O’Regal and Sahu (2007) for uniformly L-Lipschitzian and generalized asymptotically nonexpansive mappings in CAT(0) spaces.
متن کاملUniformly Quasiregular Semigroups in Two Dimensions
Let G be a semigroup of K-quasiregular or K-quasimeromorphic functions mapping a given open set U in the Riemann sphere into itself, for a xed K , the semigroup operation being the composition of functions. We prove that if G satisses an algebraic condition, which is true for all abelian semigroups, then there exists a K-quasiconformal homeomorphism of U onto an open set V such that all the fun...
متن کاملFixed Points of Uniformly Lipschitzian Mappings in Metric Trees
In this paper we examine the basic structure of metric trees and prove fixed point theorems for uniformly Lipschitzian mappings in metric trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2012
ISSN: 2008-1901
DOI: 10.22436/jnsa.005.05.07