Uniformly High-Order Structure-Preserving Discontinuous Galerkin Methods for Euler Equations with Gravitation: Positivity and Well-Balancedness

نویسندگان

چکیده

This paper presents a class of novel high-order accurate discontinuous Galerkin (DG) schemes for the compressible Euler equations under gravitational fields. A notable feature these is that they are well-balanced general hydrostatic equilibrium state, and at same time, provably preserve positivity density pressure. In order to achieve positivity-preserving properties simultaneously, DG spatial discretization carefully designed with suitable source term reformulation properly modified Harten-Lax-van Leer contact (HLLC) flux. Based on some technical decompositions as well several key admissible states HLLC flux, rigorous analyses carried out. It proven resulting schemes, coupled strong stability preserving time discretizations, satisfy weak property, which implies one can apply simple existing limiter effectively enforce without losing accuracy conservation. The proposed methods applicable system equation state. Extensive one- two-dimensional numerical tests demonstrate desired including exact preservation ability capture small perturbation such robustness solving problems involving low and/or pressure, good resolution smooth solutions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations

Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas, as standard numerical methods may fail in the presence of these areas. These equations also have steady state solutions in which the flux gradients are nonzero but exactly balanced by the ...

متن کامل

Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms

In [16, 17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions),...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes

We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...

متن کامل

Conservative high order positivity-preserving discontinuous Galerkin methods for linear hyperbolic and radiative transfer equations

We further investigate the high order positivity-preserving discontinuous Galerkin (DG) methods for linear hyperbolic and radiative transfer equations developed in [14]. The DG methods in [14] can maintain positivity and high order accuracy, but they rely both on the scaling limiter in [15] and a rotational limiter, the latter may alter cell averages of the unmodulated DG scheme, thereby affect...

متن کامل

High Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations

The positivity-preserving property is an important and challenging issue for the numerical solution of radiative transfer equations. In the past few decades, different numerical techniques have been proposed to guarantee positivity of the radiative intensity in several schemes, however it is difficult to maintain both high order accuracy and positivity. The discontinuous Galerkin (DG) finite el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/20m133782x