Uniform graph embedding into metric spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Metric Spaces and Their Embedding into Lebesgue Spaces

The properties of the metric topology on infinite and finite sets are analyzed. We answer whether finite metric spaces hold interest in algebraic topology, and how this result is generalized to pseudometric spaces through the Kolmogorov quotient. Embedding into Lebesgue spaces is analyzed, with special attention for Hilbert spaces, `p, and EN .

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Embedding Metric Spaces into Normed Spaces and Estimates of Metric Capacity

Let M be an arbitrary real normed space of finite dimension d ≥ 2. We define the metric capacity of M as the maximal m ∈ N such that every m-point metric space is isometric to some subset of M (with metric induced by M). We obtain that the metric capacity of M lies in the range from 3 to ⌊ 3 2d ⌋ + 1, where the lower bound is sharp for all d, and the upper bound is shown to be sharp for d ∈ {2,...

متن کامل

On Embedding of Finite Metric Spaces into Hilbert Space

Metric embedding plays an important role in a vast range of application areas such as computer vision, computational biology, machine learning, networking, statistics, and mathematical psychology, to name a few. The main criteria for the quality of an embedding is its average distortion over all pairs. A celebrated theorem of Bourgain states that every finite metric space on n points embeds in ...

متن کامل

Graph Augmentation via Metric Embedding

Kleinberg [17] proposed in 2000 the first random graph model achieving to reproduce small world navigability, i.e. the ability to greedily discover polylogarithmic routes between any pair of nodes in a graph, with only a partial knowledge of distances. Following this seminal work, a major challenge was to extend this model to larger classes of graphs than regular meshes, introducing the concept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Research and Modeling

سال: 2012

ISSN: 2076-7633,2077-6853

DOI: 10.20537/2076-7633-2012-4-2-241-251