Uniform factorization for compact sets of weakly compact operators
نویسندگان
چکیده
منابع مشابه
Some properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملCompact Sets and Compact Operators
Proof. Properties 2 and 3 are left to the reader. For property 1, assume that S is an unbounded compact set. Since S is unbounded, we may select a sequence {vn}n=1 such that ‖vn‖ → 0 as n→∞. Since S is compact, this sequence will have a convergent subsequence, say {vk}k=1, which will still be unbounded. This sequence is Cauchy, so there is a positive integer K for which ‖v`− vm‖ ≤ 1/2 for all `...
متن کاملUniform Convergence to a Left Invariance on Weakly Compact Subsets
Let $left{a_alpharight}_{alphain I}$ be a bounded net in a Banach algebra $A$ and $varphi$ a nonzero multiplicative linear functional on $A$. In this paper, we deal with the problem of when $|aa_alpha-varphi(a)a_alpha|to0$ uniformly for all $a$ in weakly compact subsets of $A$. We show that Banach algebras associated to locally compact groups such as Segal algebras and $L^1$-algebras are resp...
متن کاملWeakly Compact Groups of Operators
It is shown that the weakly closed algebra generated by a weakly compact group of operators on a Banach space is reflexive and equals its second commutant. Also, an example is given to show that the generator of a monothetic weakly compact group of operators need not have a logarithm in the algebra of all bounded linear operators on the underlying space. Let X be a complex Banach space, B(X) th...
متن کاملUniformly Factoring Weakly Compact Operators
Let X and Y be separable Banach spaces. Suppose Y either has a shrinking basis or Y is isomorphic to C(2N) andA is a subset of weakly compact operators from X to Y which is analytic in the strong operator topology. We prove that there is a reflexive space with a basis Z such that every T ∈ A factors through Z. Likewise, we prove that if A ⊂ L(X,C(2N)) is a set of operators whose adjoints have s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2006
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm174-1-7