Uniform convergence of convex optimization problems
نویسندگان
چکیده
منابع مشابه
Global and uniform convergence of subspace correction methods for some convex optimization problems
This paper gives some global and uniform convergence estimates for a class of subspace correction (based on space decomposition) iterative methods applied to some unconstrained convex optimization problems. Some multigrid and domain decomposition methods are also discussed as special examples for solving some nonlinear elliptic boundary value problems.
متن کاملConvergence Analysis of the Gauss-newton Method for Convex Inclusion Problems and Convex Composite Optimization
Using the convex process theory we study the convergence issues of the iterative sequences generated by the Gauss-Newton method for the convex inclusion problem defined by a cone C and a Fréchet differentiable function F (the derivative is denoted by F ′). The restriction in our consideration is minimal and, even in the classical case (the initial point x0 is assumed to satisfy the following tw...
متن کاملUniform Convergence and Rate Adaptive Estimation of a Convex Function
This paper addresses the problem of estimating a convex regression function under both the sup-norm risk and the pointwise risk using B-splines. The presence of the convex constraint complicates various issues in asymptotic analysis, particularly uniform convergence analysis. To overcome this difficulty, we establish the uniform Lipschitz property of optimal spline coefficients in the `∞-norm b...
متن کاملOn Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format
Alternating linear schemes (ALS), with the Alternating Least Squares algorithm a notable special case, provide one of the simplest and most popular choices for the treatment of optimization tasks by tensor methods. An according adaptation of ALS for the recent TT (= tensor train) format (Oseledets, 2011), known in quantum computations as matrix product states, has recently been investigated in ...
متن کاملA note on the convergence of ADMM for linearly constrained convex optimization problems
This note serves two purposes. Firstly, we construct a counterexample to show that the statement on the convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex optimization problems in a highly influential paper by Boyd et al. (Found TrendsMach Learn 3(1):1–122, 2011) can be false if no prior condition on the existence of solutions to all th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1983
ISSN: 0022-247X
DOI: 10.1016/0022-247x(83)90022-7