Uniform boundedness principles for Sobolev maps into manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev maps on manifolds: degree, approximation, lifting

In this paper, we review some basic topological properties of the space X = W s,p(M ;N), where M and N are compact Riemannian manifold without boundary. More specifically, we discuss the following questions: can one define a degree for maps in X? are smooth or not-farfrom-being-smooth maps dense in X? can one lift S1-valued maps?

متن کامل

Uniform Sobolev Inequalities for Manifolds Evolving by Ricci Flow

Let M be a compact n-dimensional manifold, n ≥ 2, with metric g(t) evolving by the Ricci flow ∂gij/∂t = −2Rij in (0, T ) for some T ∈ R + ∪ {∞} with g(0) = g0. Let λ0(g0) be the first eigenvalue of the operator −∆g0 + R(g0) 4 with respect to g0. We extend a recent result of R. Ye and prove uniform logarithmic Sobolev inequality and uniform Sobolev inequalities along the Ricci flow for any n ≥ 2...

متن کامل

Uniform Boundedness Principles for Ordered Topological Vector Spaces

We obtain uniform boundedness principles for a new class of families of mappings from topological vector spaces to ordered topological vector spaces. The new class of families of mappings includes the family of linear mappings and many other families which consist of nonlinear mappings. 1 Department of Mathematics, Tianjin University, Tianjin 300072, China. E-mail address: [email protected]...

متن کامل

Biwave Maps into Manifolds

We generalize wave maps to biwave maps. We prove that the composition of a biwave map and a totally geodesic map is a biwave map. We give examples of biwave nonwave maps. We show that if f is a biwave map into a Riemannian manifold under certain circumstance, then f is a wave map. We verify that if f is a stable biwave map into a Riemannian manifold with positive constant sectional curvature sa...

متن کامل

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2019

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2018.06.002