Uniform algebras on curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Algebras on Curves

The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved STOLZENBERG'S THEOREM. Let XQC be a polynomially convex set. Let KQC be a finite union of Q-curves. Then (XKJK)*—X\JK is a {possibly empty) pure 1-dimensional analytic...

متن کامل

M-IDEAL STRUCTURE IN UNIFORM ALGEBRAS

It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).

متن کامل

On Uniform Bounds for Rational Points on Non-rational Curves

We show that the number of rational points of height ≤ H on a non-rational plane curve of degree d is Od(H 2/d−δ), for some δ > 0 depending only on d. The implicit constant depends only on d. This improves a result of Heath-Brown, who proved the bound O (H2/d+ ). We also show that one can take δ = 1/450 in the case d = 3.

متن کامل

Elliptic curves and C*-algebras

We use C-algebras in the context of modular curves and holomorphic 1-forms. We focus on the “leaf space” X and C-algebra C(X) of the Weil 1-form ωN on the modular curve X0(N). It is proved that K0(C (X)) is isomorphic to a stationary dimension group of rank 4g − 3. An application of this result to Hilbert’s 12th problem is discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1969

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1969-12389-x