Uncertainty Quantification for Markov Random Fields

نویسندگان

چکیده

We present an information-based uncertainty quantification method for general Markov random fields (MRFs). MRFs are structured, probabilistic graphical models over undirected graphs and provide a f...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Random Fields and Conditional Random Fields

Markov chains provided us with a way to model 1D objects such as contours probabilistically, in a way that led to nice, tractable computations. We now consider 2D Markov models. These are more powerful, but not as easy to compute with. In addition we will consider two additional issues. First, we will consider adding observations to our models. These observations are conditioned on the value of...

متن کامل

Markov Random Topic Fields

Most approaches to topic modeling assume an independence between documents that is frequently violated. We present an topic model that makes use of one or more user-specified graphs describing relationships between documents. These graph are encoded in the form of a Markov random field over topics and serve to encourage related documents to have similar topic structures. Experiments on show upw...

متن کامل

Combinatorial Markov Random Fields

A combinatorial random variable is a discrete random variable defined over a combinatorial set (e.g., a power set of a given set). In this paper we introduce combinatorial Markov random fields (Comrafs), which are Markov random fields where some of the nodes are combinatorial random variables. We argue that Comrafs are powerful models for unsupervised and semi-supervised learning. We put Comraf...

متن کامل

Markov Random Fields

1. Markov property The Markov property of a stochastic sequence {Xn}n≥0 implies that for all n ≥ 1, Xn is independent of (Xk : k / ∈ {n− 1, n, n + 1}), given (Xn−1, Xn+1). Another way to write this is: Xn ⊥ (Xk : k / ∈ ∂{n}) | (Xk : k ∈ ∂{n}) where ∂{n} is the set of neighbors of site n. We would like to now generalize this Markov property from one-dimensional index sets to more arbitrary domains.

متن کامل

Hidden Markov Random Fields

A noninvertible function of a first order Markov process, or of a nearestneighbor Markov random field, is called a hidden Markov model. Hidden Markov models are generally not Markovian. In fact, they may have complex and long range interactions, which is largely the reason for their utility. Applications include signal and image processing, speech recognition, and biological modeling. We show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification

سال: 2021

ISSN: ['2166-2525']

DOI: https://doi.org/10.1137/20m1374614