Uncertainty Analysis of Monthly Streamflow Forecasting
نویسندگان
چکیده
منابع مشابه
Uncertainty Analysis of Monthly Streamflow Forecasting
Streamflow forecasting is an important factor in water resources planning and management. In this study Feed Forward Artificial Neural Network (FFANN) was used for monthly streamflow forecasting. Three scenarios were considered for modeling. Principal Component Analysis (PCA) is used for reducing the model architecture complexity and input data reduction. Twelve statistical criteria were used t...
متن کاملMonthly streamflow forecasting using Gaussian Process Regression
Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Austin, Austin, TX 78713, United States Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha, Ch...
متن کاملMultivariate streamflow forecasting using independent component analysis
[1] Seasonal forecasting of streamflow provides many benefits to society, by improving our ability to plan and adapt to changing water supplies. A common approach to developing these forecasts is to use statistical methods that link a set of predictors representing climate state as it relates to historical streamflow, and then using this model to project streamflow one or more seasons in advanc...
متن کاملMultisite disaggregation of monthly to daily streamflow
Streamflow disaggregation is used to preserve statistical attributes of time series across multiple sites and timescales. Several algorithms for spatial disaggregation and for disaggregation of annual to monthly flows are available. However, the disaggregation of monthly to daily or weekly to daily flows remains a challenge. A new algorithm is presented for simultaneously disaggregating monthly...
متن کاملNeural network streamflow forecasting
Classification of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts N. Lauzon, F. Anctil, and C. W. Baxter Golder Associates, Calgary, Canada Département de génie civil, Pavillon Pouliot, Université Laval, Québec, G1K 7P4, Canada HYDRANNT Consulting Inc., Port Coquitlam, Canada Received: 20 December 2005 – Acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current World Environment
سال: 2014
ISSN: 0973-4929,2320-8031
DOI: 10.12944/cwe.9.3.40