Unboundedness of potential dependent Riesz transforms for totally irregular measures

نویسندگان

چکیده

We prove that, for totally irregular measures ? on R d with ? 3 , the ( ? 1 ) -dimensional Riesz transform T A V f x = ? ? E y adapted to Schrödinger operator L div + fundamental solution is not bounded 2 . This generalises recent results obtained by Conde-Alonso, Mourgoglou and Tolsa free-space elliptic operators Hölder continuous coefficients since it allows presence of potentials in reverse class H achieve this obtaining new exponential decay estimates kernel as well regularity at local scales determined potential's critical radius function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the unboundedness of martingale transforms

© Springer-Verlag, Berlin Heidelberg New York, 1985, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...

متن کامل

Indefinite higher Riesz transforms

Stein’s higher Riesz transforms are translation invariant operators on L2(Rn) built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–Beltrami operators. In this article, generalizing Stein’s higher Riesz transforms, we construct a family of translation invariant operators by using discrete series representations for hyperboloids associated to the indefini...

متن کامل

Large Scale Renormalisation of Fourier Transforms of Self-similar Measures and Self-similarity of Riesz Measures

We shall show that the oscillations observed by Strichartz JRS92, Str90] in the Fourier transforms of self-similar measures have a large-scale renormali-sation given by a Riesz-measure. Vice versa the Riesz measure itself will be shown to be self-similar around every triadic point.

متن کامل

Principal Values for Riesz Transforms and Rectifiability

Let E ⊂ R with H(E) < ∞, where H stands for the n-dimensional Hausdorff measure. In this paper we prove that E is n-rectifiable if and only if the limit

متن کامل

Higher order Riesz transforms for Hermite expansions

In this paper, we consider the Riesz transform of higher order associated with the harmonic oscillator [Formula: see text], where Δ is the Laplacian on [Formula: see text]. Moreover, the boundedness of Riesz transforms of higher order associated with Hermite functions on the Hardy space is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124570