Unbalance Vibration Suppression of Maglev High-Speed Motor Based on the Least-Mean-Square

نویسندگان

چکیده

The harmonic response caused by unbalanced excitation vibration for the high-speed rotating machinery will reduce control accuracy and stability of maglev motor, limit increase its speed. When active magnetic bearing is used to solve vibration, it additional electromagnetic force energy consumption, sometimes leading saturation power amplifier, transfer foundation, causing foundation vibrate. In this paper, we analyzed periodic unbalance principle rotor suppression, model derived. Least-Mean-Square (LMS) algorithm introduced into PID control, an strategy based on real-time filtering compensation displacement signal proposed, eliminated synchronous frequency input control. experimental results show that proposed method can improve rotor’s rotation accuracy, bearing’s maximum current, decrease supporting foundation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

Track induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic ...

متن کامل

Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...

متن کامل

Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...

متن کامل

Mean square convergence analysis for kernel least mean square algorithm

In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...

متن کامل

Kernel Least Mean Square Algorithm

A simple, yet powerful, learning method is presented by combining the famed kernel trick and the least-mean-square (LMS) algorithm, called the KLMS. General properties of the KLMS algorithm are demonstrated regarding its well-posedness in very high dimensional spaces using Tikhonov regularization theory. An experiment is studied to support our conclusion that the KLMS algorithm can be readily u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Actuators

سال: 2022

ISSN: ['2076-0825']

DOI: https://doi.org/10.3390/act11120348