Ultra Short-Term Power Load Forecasting Based on Similar Day Clustering and Ensemble Empirical Mode Decomposition

نویسندگان

چکیده

With the increasing demand of power industry for load forecasting, improving accuracy forecasting has become increasingly important. In this paper, we propose an ultra short-term method based on similar day clustering and EEMD (Ensemble Empirical Mode Decomposition). detail, K-means algorithm was utilized to divide historical data into different clusters. Through EEMD, each cluster were decomposed several sub-sequences with time scales. The LSTNet (Long- Short-term Time-series Network) adopted as model these sub-sequences. forecast results combined expected result. proposed predicts in next 4 h interval 15 min. experimental show that obtains higher prediction than other comparable models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine

The growing trend of wind generation in power systems and its uncertain nature have recently highlighted the importance of wind power prediction. In this paper a new wind power prediction approach is proposed which includes an improved version of Kriging Interpolation Method (KIM), Empirical Mode Decomposition (EMD), an information-theoretic feature selection method, and a closed-loop forecasti...

متن کامل

Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensembl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16041989