Ultimate stable element Z = 137

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultimate Truth vis-à-vis stable Truth

We show that the set of ultimately true sentences in Hartry Field’s Revenge-immune solution model to the semantic paradoxes is recursively isomorphic to the set of stably true sentences obtained in Hans Herzberger’s revision sequence starting from the null hypothesis. We further remark that this shows that a substantial subsystem of second order number theory is needed to establish the semantic...

متن کامل

Z-stable Ash Algebras

The Jiang–Su algebra Z has come to prominence in the classification program for nuclear C-algebras of late, due primarily to the fact that Elliott’s classification conjecture predicts that all simple, separable, and nuclear C-algebras with unperforated K-theory will absorb Z tensorially (i.e., will be Z-stable). There exist counterexamples which suggest that the conjecture will only hold for si...

متن کامل

Homomorphisms into Simple Z-stable C∗-algebras

Let A and B be unital separable simple amenable C*-algebras which satisfy the Universal Coefficient Theorem. Suppose that A and B are Z-stable and are of rationally tracial rank no more than one. We prove the following: Suppose that φ, ψ : A → B are unital *monomorphisms. There exists a sequence of unitaries {un} ⊂ B such that lim n→∞ unφ(a)un = ψ(a) for all a ∈ A, if and only if [φ] = [ψ] in K...

متن کامل

Decomposition Rank of Z-stable C∗-algebras

We show that C∗-algebras of the form C(X)⊗Z, where X is compact and Hausdorff and Z denotes the Jiang–Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for C∗-bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine structure of nuclear C∗-algebras of Toms and the second named author, even in a non-simple se...

متن کامل

Stable Groups and Expansions of (z,+, 0)

We show that if G is a stable group of finite weight with no infinite, infinite-index, chains of definable subgroups, then G is superstable of finite U rank. Combined with recent work of Palaćın and Sklinos, we conclude that (Z,+, 0) has no proper stable expansions of finite weight. A corollary of this result is that if P ⊆ Zn is definable in a finite dp-rank expansion of (Z,+, 0), and (Z,+, 0,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Science and Technology

سال: 2009

ISSN: 0974-6846,0974-5645

DOI: 10.17485/ijst/2009/v2i3.10