Ulrich Bundles on Intersections of Two 4-Dimensional Quadrics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Singular Intersections of Quadrics

— Given an intersection of two quadrics X ⊂ Pm−1, with m > 9, the quantitative arithmetic of the set X(Q) is investigated under the assumption that the singular locus of X consists of a pair of conjugate singular points defined over Q(i).

متن کامل

Monads and Vector Bundles on Quadrics

We improve Ottaviani’s splitting criterion for vector bundles on a quadric hypersurface and obtain the equivalent of the result by Rao, Mohan Kumar and Peterson. Then we give the classification of rank 2 bundles without ”inner” cohomology on Qn (n > 3). It surprisingly exactly agrees with the classification by Ancona, Peternell and Wisniewski of rank 2 Fano bundles. Introduction A monad on P or...

متن کامل

Parameterizing Intersections of Time-Varying Quadrics

This report addresses the problem of computing the parametrization of the intersection of deformable quadratic algebraic surfaces (quadrics) in projective space. It also presents an automatic method for describing the evolution in time of the topology of the intersection. The work is based on the results from [3, 4], which offer an exact parametrization of the intersection of two quadrics with ...

متن کامل

Classification of Free Actions on Complete Intersections of Four Quadrics

In this paper we classify all free actions of finite groups on Calabi-Yau complete intersection of 4 quadrics in P, up to projective equivalence. We get some examples of smooth CalabiYau threefolds with large nonabelian fundamental groups. We also observe the relation between some of these examples and moduli of polarized abelian surfaces.

متن کامل

Monads and Rank Three Vector Bundles on Quadrics

In this paper we give the classification of rank 3 vector bundles without ”inner” cohomology on a quadric hypersurface Qn (n > 3) by studying the associated monads. Introduction A monad on P or, more generally, on a projective variety X, is a complex of three vector bundles 0 → A α −→ B β −→ C → 0 such that α is injective as a map of vector bundles and β is surjective. Monads have been studied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2019

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnz320