Über Gerbstoffe, 4.: Daniel Peters: Hamameli-Tannin (II)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker 4: Daniel Javitt, USA

Treatments for brain dysfunction have relied traditionally on medication-based approaches. Non-invasive transcranial electric stimulation (tES) approaches such as transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) offer an alternative approach for psychiatric treatment. In this approach, low level (1–2 mA) currents are applied over appropriate...

متن کامل

Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts

The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tanni...

متن کامل

Peters’ Anomaly

While conducting medical aid in Mozambique, a 41 year old African male presented to our eye clinic complaining of visual impairment. The male was found to have Peters' anomaly type 2, a rare congenital ocular malformation leading to sensory amblyopia and glaucoma.

متن کامل

CPS transformation of flow information , Part II : administrative reductions ∗ DANIEL

We characterize the impact of a linear β-reduction on the result of a control-flow analysis. (By ‘a linear β-reduction’ we mean the β-reduction of a linear λ-abstraction, i.e., of a λabstraction whose parameter occurs exactly once in its body.) As a corollary, we consider the administrative reductions of a Plotkin-style transformation into Continuation-Passing Style (CPS), and how they affect t...

متن کامل

COMS 6998 - 4 Fall 2017 Presenter : Daniel Hsu

+ errPn(hn)− errPn(h) + errPn(h ∗)− errP (h∗). The second part is less than or equals to 0. We can disregard it when we aim at deriving an upper bound of the regret. Since the target function h∗ is independent of the sample pairs, the third part can be bounded easily by analyzing the binomial distribution with success probability errP (h∗) and n trials. To analyze the remaining first part, we b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Berichte der deutschen chemischen Gesellschaft (A and B Series)

سال: 1920

ISSN: 0365-9488

DOI: 10.1002/cber.19200530613