منابع مشابه
Two-variable orthogonal polynomials of big q-Jacobi type
A four-parameter family of orthogonal polynomials in two variables is defined by Pn,k(x, y; a, b, c, d; q) :=Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ∈ N; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]...
متن کاملSzegö on Jacobi Polynomials
One of the interesting features in the development of analysis in the twentieth century is the remarkable growth, in various directions, of the theory of orthogonal functions. Two brilliant achievements on the threshold of this century—Fejér's paper on Fourier series and Fredholm's papers on integral equations—have been acting as a powerful inspiring source of attraction, inviting analysts to d...
متن کاملLaguerre and Jacobi polynomials
We present results on co-recursive associated Laguerre and Jacobi polynomials which are of interest for the solution of the Chapman-Kolmogorov equations of some birth and death processes with or without absorption. Explicit forms, generating functions, and absolutely continuous part of the spectral measures are given. We derive fourth-order differential equations satisfied by the polynomials wi...
متن کاملTwo new conjectures concerning positive Jacobi polynomials sums
A refinement of a conjecture of Gasper concerning the values of (α, β), −1/2 < β < 0, −1 < α + β < 0, for which the inequalities
متن کاملTwo variable orthogonal polynomials and structured matrices
We consider bivariate real valued polynomials orthogonal with respect to a positive linear functional. The lexicographical and reverse lexicographical orderings are used to order the monomials. Recurrence formulas are derived between polynomials of different degrees. These formulas link the orthogonal polynomials constructed using the lexicographical ordering with those constructed using the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Transforms and Special Functions
سال: 2015
ISSN: 1065-2469,1476-8291
DOI: 10.1080/10652469.2015.1013034