Two-Stage Multi-Swarm Particle Swarm Optimizer for Unconstrained and Constrained Global Optimization
نویسندگان
چکیده
منابع مشابه
A Particle Swarm Optimizer for Constrained Numerical Optimization
This paper presents a particle swarm optimizer to solve constrained optimization problems. The proposed approach adopts a simple method to handle constraints of any type (linear, nonlinear, equality and inequality), and it also presents a novel mechanism to update the velocity and position of each particle. The approach is validated using standard test functions reported in the specialized lite...
متن کاملA Multiobjective Particle Swarm Optimizer for Constrained Optimization
Constraint handling techniques are mainly designed for evolutionary algorithms to solve constrained multiobjective optimization problems (CMOPs). Most multiojective particle swarm optimization (MOPSO) designs adopt these existing constraint handling techniques to deal with CMOPs. In the proposed constrained MOPSO, information related to particles’ infeasibility and feasibility status is utilize...
متن کاملA Particle Swarm Optimizer for Multi-Objective Optimization
This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions propos...
متن کاملMulti-Species Particle Swarm Optimizer for Multimodal Function Optimization
This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tri...
متن کاملConstrained Particle Swarm Optimization
In this Chapter, we present a new face detection and tracking algorithm using Bayesconstrained particle swarm optimization (BC-PSO), which is a population based searching algorithm. A cascade of boosted classifiers based on Haar-like features is trained and employed for object detection. Then the PSO-based algorithm is applied for object tracking. Basically the searching can be divided into two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3007743