Two-Level Nyström--Schur Preconditioner for Sparse Symmetric Positive Definite Matrices

نویسندگان

چکیده

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 29 January 2021Accepted: 19 July 2021Published online: 11 November 2021Keywordsrandomized methods, Nyström's method, low rank, preconditioner, symmetric positive definite, Schur complementAMS Subject Headings65F08, 65F50, 65F55Publication DataISSN (print): 1064-8275ISSN (online): 1095-7197Publisher: Society for Industrial and Applied MathematicsCODEN: sjoce3

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Positive Definite Matrices

We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylovsubspace-based iterative solvers such as the GMRES algorit...

متن کامل

"Compress and eliminate" solver for symmetric positive definite sparse matrices

We propose a new approximate factorization for solving linear systems with symmetric positive definite sparse matrices. In a nutshell the algorithm is to apply hierarchically block Gaussian elimination and additionally compress the fill-in. The systems that have efficient compression of the fill-in mostly arise from discretization of partial differential equations. We show that the resulting fa...

متن کامل

A two-level sparse approximate inverse preconditioner for unsymmetric matrices

Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...

متن کامل

Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...

متن کامل

DDtBe for Band Symmetric Positive Definite Matrices

We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/21m139548x