Two Legendre Polynomial Identities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent Legendre-sobolev Polynomial Series

Let be introduced the Sobolev-type inner product (f, g) = 1 2 Z 1 −1 f(x)g(x)dx + M [f ′(1)g′(1) + f ′(−1)g′(−1)], where M ≥ 0. In this paper we will prove that for 1 ≤ p ≤ 4 3 there are functions f ∈ L([−1, 1]) whose Fourier expansion in terms of the orthonormal polynomials with respect to the above Sobolev inner product are divergent almost everywhere on [−1, 1]. We also show that, for some v...

متن کامل

Polynomial identities for partitions

For any partition λ of an integer n , we write λ =< 11, 22, . . . , nn > where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e. r(λ) = ∑n i=1mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n . For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk be the sum of all monomials of to...

متن کامل

Interprocedurally Analyzing Polynomial Identities

Since programming languages are Turing complete, it is impossible to decide for all programs whether a given non-trivial semantic property is valid or not. The way-out chosen by abstract interpretation is to provide approximate methods which may fail to certify a program property on some programs. Precision of the analysis can be measured by providing classes of programs for which the analysis ...

متن کامل

Polynomial Identities for Hypermatrices

We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

متن کامل

Polynomial Generalizations of Two-Variable Ramanujan Type Identities

We provide finite analogs of a pair of two-variable q-series identities from Ramanujan’s lost notebook and a companion identity. “The progress of mathematics can be viewed as progress from the infinite to the finite.” —Gian-Carlo Rota (1983)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Review

سال: 1983

ISSN: 0036-1445,1095-7200

DOI: 10.1137/1025124