Two-dimensional stable tameness over Noetherian domains of dimension one
نویسندگان
چکیده
منابع مشابه
Two-dimensional projectively-tameness over Noetherian domains of dimension one
In this paper all coordinates in two variables over a Noetherian Q-domain of Krull dimension one are proved to be projectively tame. In order to do this, some results concerning projectively-tameness of polynomials in general are shown. Furthermore, we deduce that all automorphisms in two variables over a Noetherian reduced ring of dimension zero are tame.
متن کاملNoetherian Hopf Algebra Domains of Gelfand-kirillov Dimension Two
We classify all noetherian Hopf algebras H over an algebraically closed field k of characteristic zero which are integral domains of GelfandKirillov dimension two and satisfy the condition ExtH(k, k) 6= 0. The latter condition is conjecturally redundant, as no examples are known (among noetherian Hopf algebra domains of GK-dimension two) where it fails.
متن کاملIntersections of valuation overrings of two-dimensional Noetherian domains
We survey and extend recent work on integrally closed overrings of two-dimensional Noetherian domains, where such overrings are viewed as intersections of valuation overrings. Of particular interest are the cases where the domain can be represented uniquely by an irredundant intersection of valuation rings, and when the valuation rings can be chosen from a Noetherian subspace of the Zariski-Rie...
متن کاملStable Tameness of Two-Dimensional Polynomial Automorphisms Over a Regular Ring
In this paper it is established that all two-dimensional polynomial automorphisms over a regular ring R are stably tame. This results from the main theorem of this paper, which asserts that an automorphism in any dimension n is stably tame if said condition holds point-wise over SpecR. A key element in the proof is a theorem which yields the following corollary: Over an Artinian ring A all two-...
متن کاملStable Tameness of Two-Dimensional Polynomial Automorphisms Over a Dedekind Domain
In this paper it is established that all two-dimensional polynomial automorphisms over a Dedekind Q-algebra are stably tame; in fact, they become tame with the addition of three more dimensions. A key element in the proof is this additional new theorem: Over an Artinian Q-algebra all two-dimensional polynomial automorphisms having Jacobian determinant one are tame.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2003
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(02)00179-2