Twelfth moment of Dirichlet L-functions to prime power moduli

نویسندگان

چکیده

We prove the q-aspect analogue of Heath-Brown's result on twelfth power moment Riemann zeta function for Dirichlet L-functions to odd prime moduli. Our results rely p-adic method stationary phase sums products and complement Nunes' bound smooth square-free

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sixth Power Moment of Dirichlet L-functions

Understanding moments of families of L-functions has long been an important subject with many number theoretic applications. Quite often, the application is to bound the error term in an asymptotic expression of the average of an arithmetic function. Also, a good bound for a moments can be used to obtain a point-wise bound for an individual L-function in the family; strong enough bounds of this...

متن کامل

The Fourth Moment of Dirichlet L-functions

Here ∑∗ denotes summation over primitive characters χ (mod q), φ(q) denotes the number of primitive characters (mod q), and ω(q) denotes the number of distinct prime factors of q. Note that φ(q) is a multiplicative function given by φ(p) = p − 2 for primes p, and φ(p) = p(1 − 1/p) for k ≥ 2 (see Lemma 1 below). Also note that when q ≡ 2 (mod 4) there are no primitive characters (mod q), and so ...

متن کامل

The Fourth Moment of Dirichlet L-functions

for certain explicitly computable constants ai. The difficult part of extending Ingham’s result to include the lower-order terms is asymptotically evaluating the off-diagonal terms. The family of all primitive Dirichlet L-functions of modulus q is similar in some ways to the Riemann zeta function in t-aspect, but is more difficult to analyze. In 1981, Heath-Brown obtained an asymptotic formula ...

متن کامل

Prime number races and zeros of Dirichlet L-functions 09rit148

This Research in Teams meeting focused on the finer behaviour of the function π(x; q, a), which denotes the number of prime numbers of the form qn+ a that are less than or equal to x. Dirichlet’s famous theorem on primes in arithmetic progressions asserts that that there are infinitely many primes of the form qn + a when a is a reduced residue modulo q (that is, when a and q are relatively prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2021

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.201909_008