Tunable magnetic field effects on the near-field radiative heat transfer in planar three-body systems

نویسندگان

چکیده

Recently, the application of an external magnetic field to actively control near-field heat transfer has emerged as appealing and promising technique. Existing studies have shown that static tends reduce subwavelength radiative flux exchanged between two planar structures containing magneto-optical (MO) materials, but so far nearfield thermomagnetic effects in systems with more such at different temperatures not been reported. Here, we are focused on examining how presence modifies energy a many-body configuration consisting three MO n-doped semiconductors slabs, separated by vacuum gaps. To exactly calculate transferred anisotropic system, general Green-function-based approach is offered, which allows one investigate arbitrary manybody geometry. We demonstrate that, under specific choices geometrical thermal parameters, applied able either or enhance three-element systems, depending interplay damped evanescent fields zero-field surface waves propagating hyperbolic modes induced fields. Our study broadens understanding concerning use regimes, may be leveraged for potential applications realm nanoscale management.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-field radiative heat transfer between macroscopic planar surfaces.

Near-field radiation allows heat to propagate across a small vacuum gap at rates several orders of magnitude above that of far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase i...

متن کامل

Radiative heat transfer: many-body effects

Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...

متن کامل

Shape-independent limits to near-field spectral radiative heat transfer

We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ|/ Imχ, optimally mediated by near-field photo...

متن کامل

Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces.

We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much lar...

متن کامل

Shape-Independent Limits to Near-Field Radiative Heat Transfer.

We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ|(2)/Im χ, optimally mediated by near-field pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2023

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.107.205405