Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution

نویسندگان

چکیده

Let U be a random unitary matrix drawn from the Hua-Pickrell distribution $$\mu _{\textrm{U}(n+m)}^{(\delta )}$$ on group $$\textrm{U}(n+m)$$ . We show that eigenvalues of truncated $$[U_{i,j}]_{1\le i,j\le n}$$ form determinantal point process $$\mathscr {X}_n^{(m,\delta unit disc $$\mathbb {D}$$ for any $$\delta \in \mathbb {C}$$ satisfying $$\textrm{Re}\,\delta >-1/2$$ also prove limiting taken by $$n\rightarrow \infty $$ is always {X}^{[m]}$$ , independent Here with weighted Bergman kernel $$\begin{aligned} \begin{aligned} K^{[m]}(z,w)=\frac{1}{(1-z{\overline{w}})^{m+1}} \end{aligned} \end{aligned}$$ respect to reference measure $$d\mu ^{[m]}(z)=\frac{m}{\pi }(1-|z|)^{m-1}d\sigma (z)$$ where $$d\sigma Lebesgue

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncations of random unitary matrices

We analyse properties of non-Hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N > M , distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ...

متن کامل

Truncations of Random Unitary Matrices and Young Tableaux

Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). For any k ≤ d, and any k × k submatrix Uk of U, we express the average value of |Tr(Uk)| as a sum over partitions of n with at most k rows whose terms count certain standard and semistandard Young tableaux. We combine our formula with a variant of the Colour-Flavour Transformation of lattice gauge theo...

متن کامل

Hua-pickrell Measures on General Compact Groups

Take a generic subgroup G, endowed with its Haar measure, from U(n,K), the unitary group of dimension n over the field K of real, complex or quaternion numbers. We give some equalities in law for Z := det(Id − G), G ∈ G : under some general conditions, Z can be decomposed as a product of independent random variables, whose laws are explicitly known (Section 2). Consequently G, endowed with a ge...

متن کامل

Truncations of a Random Unitary Matrix and Young Tableaux

Abstract. Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). We express the moments of the trace of any submatrix of U as a sum over partitions whose terms count certain standard and semistandard Young tableaux. Using this combinatorial interpretation, we obtain a simple closed form for the moments of an individual entry of a random unitary matrix and ...

متن کامل

Addition of Free Unitary Random Matrices

We consider a new class of non–hermitian random matrices, namely the ones which have the form of sums of freely independent terms which involve unitary matrices. After deriving some general identities describing additive properties of unitary matrices, we solve three particular models: CUE plus CUE, CUE plus . . . plus CUE (i. e. the sum of an arbitrary number of CUE matrices), and CUE plus a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2022

ISSN: ['1661-8254', '1661-8262']

DOI: https://doi.org/10.1007/s11785-022-01306-8