Triangulations of polygons and stacked simplicial complexes: separating their Stanley–Reisner ideals
نویسندگان
چکیده
Abstract A triangulation of a polygon has an associated Stanley–Reisner ideal. We obtain full algebraic and combinatorial understanding these ideals describe their separated models. More generally, we do this for stacked simplicial complexes, in particular polytopes.
منابع مشابه
Tchebyshev triangulations of stable simplicial complexes
We generalize the notion of the Tchebyshev transform of a graded poset to a triangulation of an arbitrary simplicial complex in such a way that, at the level of the associated F -polynomials ∑ j fj−1((x − 1)/2), the triangulation induces taking the Tchebyshev transform of the first kind. We also present a related multiset of simplicial complexes whose association induces taking the Tchebyshev t...
متن کاملTriangulations of Simplicial Polytopes
Various facts about triangulations of simplicial polytopes, particularly those pertaining to the equality case in the generalized lower bound conjecture, are collected together here. They include an apparently weaker restriction on the kind of triangulation which needs to be found, and an inductive argument which reduces the number of cases to be established.
متن کاملHamiltonian Triangulations and Circumscribing Polygons
Let Σ = { S1 , . . . , Sn } be a finite set of disjoint line segments in the plane. We conjecture that its visibility graph, Vis(Σ), is hamiltonian. In fact, we make the stronger conjecture that Vis(Σ) has a hamiltonian cycle whose embedded version is a simple polygon (i.e., its boundary edges are non-crossing visibility segments). We call such a simple polygon a spanning polygon of Σ. Existenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2022
ISSN: ['0925-9899', '1572-9192']
DOI: https://doi.org/10.1007/s10801-022-01174-7