Tree-Wise Discriminative Subtree Selection for Texture Image Labeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Feature Selection for Image Texture Analysis

Texture is one of the visual features used in Content Based Image Retrieval (CBIR) to represent the contents of the image with respect to the characteristics brightness, color, shape, size, etc. Texture is a property that represents spatial distribution of an Image. Texture can be defined as a repetition of an element or pattern in a problem space. Texture analysis can be used for classificatio...

متن کامل

Discriminative Projection Selection Based Face Image Hashing

Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussia...

متن کامل

Multiscale Texture Segmentation Using Hybrid Contextual Labeling Tree

Wavelet-domain hidden Markov tree (HMT) model has been recently proposed and applied to image processing, e.g., image segmentation. A new multiscale image segmentation method, called HMTseg, was proposed by Choi and Baraniuk using the waveletdomain HMT. In this paper, we study the HMTseg algorithm and investigate the Contextual Labeling Tree which is used for the context-based Bayesian intersca...

متن کامل

Discriminative Sequence Labeling

In a classification problem, we are given the input x and want to find out which category it belongs to in a given label set Π. Information from the input x is often represented as a feature vector φ(x). The basic idea of linear classifiers, then, is to have a weight vector wz for each class label z, in the same dimension as φ(x), to distinguish input from different categories. The label for an...

متن کامل

Probabilistic and discriminative group-wise feature selection methods for credit risk analysis

Many financial organizations such as banks and retailers use computational credit risk analysis (CRA) tools heavily due to recent financial crises and more strict regulations. This strategy enables them to manage their financial and operational risks within the pool of financial institutes. Machine learning algorithms especially binary classifiers are very popular for that purpose. In real-life...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2017

ISSN: 2169-3536

DOI: 10.1109/access.2017.2725319