Tree-Species Classification and Individual-Tree-Biomass Model Construction Based on Hyperspectral and LiDAR Data

نویسندگان

چکیده

Accurate classification of tree species is essential for forest resource monitoring, management, and conservation. Based on the species, biomass model at individual-tree scale each can be accurately estimated, which improve estimation efficiency biomass. In this study, we first extracted four categories indicators: canopy height model, spectral features, vegetation indices, texture features from airborne-laser-scanning (ALS) data hyperspectral data. We used these as inputs to random algorithm screened out optimal variable combination tree-species classification, with an overall accuracy 84.4% (kappa coefficient = 0.794). Then, ALS perform segmentation in plots extract height, crown size, projected area, volume. According multivariate nonlinear fitting, parameters structure were introduced into constant allometric ratio (CAR) establish models three species: Douglas fir, Red alder, Bigleaf maple. The results showed that model-fitting effects improved after introducing parameters. addition, also found better led more accurate structural

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data

In precision forestry, tree species identification is key to evaluating the role of forest ecosystems in the provision of ecosystem services, such as carbon sequestration and assessing their effects on climate regulation and climate change. In this study, we investigated the effectiveness of tree species classification of urban forests using aerial-based HyMap hyperspectral imagery and light de...

متن کامل

Feature-based Tree Species Classification Using Hyperspectral and Lidar Data in the Bavarian Forest National Park

The Bavarian Forest National Park, established in 1970, is a unique area of forests with large nonintervention zones, which promote a large-scale rewilding process with low human interference. Thus, the National Park authority is particularly interested in investigating the structure and dynamics of the forest ecosystems within the park. However, conventional forest inventories are timeconsumin...

متن کامل

Mapping Individual Tree Species in an Urban Forest Using Airborne Lidar Data and Hyperspectral Imagery

0099-1112/12/7810–1079/$3.00/0 © 2012 American Society for Photogrammetry and Remote Sensing Abstract We developed a neural network based approach to identify urban tree species at the individual tree level from lidar and hyperspectral imagery. This approach is capable of modeling the characteristics of multiple spectral signatures within each species using an internally unsupervised engine, an...

متن کامل

Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data

Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast China. First, each individual tree crown was extracted using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15051341