Transversal electric field effect in multilayer graphene nanoribbon
نویسندگان
چکیده
منابع مشابه
Graphene nanoribbon field-effect transistor at high bias
Combination of high-mean free path and scaling ability makes graphene nanoribbon (GNR) attractive for application of field-effect transistors and subject of intense research. Here, we study its behaviour at high bias near and after electrical breakdown. Theoretical modelling, Monte Carlo simulation, and experimental approaches are used to calculate net generation rate, ionization coefficient, c...
متن کاملA computational study of ballistic graphene nanoribbon field effect transistors
A self-consistent solution of Schrödinger equation based on Green’s function formalism coupled to a two-dimensional Poisson’s equation for treating the electrostatics of the device is used to simulate and model the ballistic performance of an armchair edged GNRFET. Our results take into account interactions of third nearest neighbors, as well as relaxation of carbon–carbon bonds in the edges of...
متن کاملTheoretical study of graphene nanoribbon field-effect transistors
Carbon nanoribbons (CNRs) have been recently experimentally and theoretically investigated for different device applications due to their unique electronic properties. In this work, we present a theoretical study of the electronic structure, e.g. bandgap and density of states, of armchair carbon nanoribbons, using both, simple analytical solutions and numerical solutions based on a πorbital tig...
متن کاملTheoretical Study of a Zigzag Graphene Nanoribbon Field Effect Transistor
Graphene nanoribbons with zigzag edges show metallic behavior and are thus considered not appropriate for transistor applications. However, we show that by engineering line defects and using positive substrate impurities one can obtain a suitable effective transport gap at least for analog applications. The transfer and output characteristics of these structures are investigated employing quant...
متن کاملTrilayer Graphene Nanoribbon Field Effect Transistor Analytical Model
The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2011
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3604781