Transition probability estimates for non-Markov multi-state models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition probability estimates for non-Markov multi-state models.

Non-parametric estimation of the transition probabilities in multi-state models is considered for non-Markov processes. Firstly, a generalization of the estimator of Pepe et al., (1991) (Statistics in Medicine) is given for a class of progressive multi-state models based on the difference between Kaplan-Meier estimators. Secondly, a general estimator for progressive or non-progressive models is...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Generalized Bradley-Terry Models and Multi-Class Probability Estimates

The Bradley-Terry model for obtaining individual skill from paired comparisons has been popular in many areas. In machine learning, this model is related to multi-class probability estimates by coupling all pairwise classification results. Error correcting output codes (ECOC) are a general framework to decompose a multi-class problem to several binary problems. To obtain probability estimates u...

متن کامل

Markov Chain Sampling for Non-linear State Space Models Using Embedded Hidden Markov Models

Abstract. I describe a new Markov chain method for sampling from the distribution of the state sequences in a non-linear state space model, given the observation sequence. This method updates all states in the sequence simultaneously using an embedded Hidden Markov model (HMM). An update begins with the creation of a “pool” of K states at each time, by applying some Markov chain update to the c...

متن کامل

Probability Bracket Notation: Markov State Chain Projector, Hidden Markov Models and Dynamic Bayesian Networks

After a brief discussion of Markov Evolution Formula (MEF) expressed in Probability Bracket Notation (PBN), its close relation with the joint probability distribution (JPD) of Visible Markov Models (VMM) is demonstrated by introducing Markov State Chain Projector (MSCP). The state basis and the observed basis are defined in the Sequential Event Space (SES) of Hidden Markov Models (HMM). The JPD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2015

ISSN: 0006-341X

DOI: 10.1111/biom.12349