Transfinite multifractal dimension spectrums

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Transfinite Hausdorff Dimension

Making an extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorph...

متن کامل

Transfinite mean value interpolation in general dimension

Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative...

متن کامل

On ( transfinite ) small inductive dimension of products ∗

In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.

متن کامل

On Transfinite Extension of Asymptotic Dimension

We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as ...

متن کامل

New relative multifractal dimension measures

This paper introduces a new class of fractal dimension measures which we call relative multifractal measures. The relative multifractal measures developed are formed through a melding of the Rényi dimension spectrum, which is based on the Rényi generalized entropy, and relative entropy as given with the Kullback-Leibler distance. This new class of multifractal measures is then used to find the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1996

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-96-01622-4