Traffic state estimation through compressed sensing and Markov random field
نویسندگان
چکیده
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملTraffic data reconstruction based on Markov random field modeling
We consider the traffic data reconstruction problem. Suppose we have the traffic data of an entire city that are incomplete because some road data are unobserved. The problem is to reconstruct the unobserved parts of the data. In this paper, we propose a new method to reconstruct incomplete traffic data collected from various traffic sensors. Our approach is based on Markov random field modelin...
متن کاملa block-wise random sampling approach: compressed sensing problem
the focus of this paper is to consider the compressed sensing problem. it is stated that the compressed sensing theory, under certain conditions, helps relax the nyquist sampling theory and takes smaller samples. one of the important tasks in this theory is to carefully design measurement matrix (sampling operator). most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملSure independence screening and compressed random sensing
Compressed sensing is a very powerful and popular tool for sparse recovery of high dimensional signals. Random sensing matrices are often employed in compressed sensing. In this paper we introduce a new method named aggressive betting using sure independence screening for sparse noiseless signal recovery. The proposal exploits the randomness structure of random sensing matrices to greatly boost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Part B: Methodological
سال: 2016
ISSN: 0191-2615
DOI: 10.1016/j.trb.2016.06.009