Trading data for wind power forecasting: A regression market with lasso regularization
نویسندگان
چکیده
This paper proposes a regression market for wind agents to monetize data traded among themselves power forecasting. Existing literature on markets often treats disclosure as binary choice or modulates the quality based mismatch between offer and bid prices. As result, disadvantages either sellers due overestimation of their willingness disclose data, buyers lack useful being provided. Our proposed determines payment least absolute shrinkage selection operator (lasso), which not only provides buyer with means selecting features, but also enables each seller individualize threshold payment. Using both synthetic real-world case studies demonstrate reduction in overall losses who buy well additional financial benefits those sell data.
منابع مشابه
Stock Market Forecasting Using LASSO Linear Regression Model
Predicting stock exchange rates is receiving increasing attention and is a vital financial problem as it contributes to the development of effective strategies for stock exchange transactions. The forecasting of stock price movement in general is considered to be a thought-provoking and essential task for financial time series' exploration. In this paper, a Least Absolute Shrinkage and Selectio...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملA Data-Driven Methodology for Probabilistic Wind Power Ramp Forecasting
With increasing wind penetration, wind power ramps (WPRs) are currently drawing great attention to balancing authorities, since these wind ramps largely affect power system operations. To help better manage and dispatch the wind power, this paper develops a data-driven probabilistic wind power ramp forecasting (p-WPRF) method based on a large number of simulated scenarios. A machine learning te...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electric Power Systems Research
سال: 2022
ISSN: ['1873-2046', '0378-7796']
DOI: https://doi.org/10.1016/j.epsr.2022.108442