Tournaments and colouring

نویسندگان
چکیده

منابع مشابه

Tournaments and colouring

A tournament is a complete graph with its edges directed, and colouring a tournament means partitioning its vertex set into transitive subtournaments. For some tournaments H there exists c such that every tournament not containing H as a subtournament has chromatic number at most c (we call such a tournament H a hero); for instance, all tournaments with at most four vertices are heroes. In this...

متن کامل

Local Tournaments and In - Tournaments

Preface Tournaments constitute perhaps the most well-studied class of directed graphs. One of the reasons for the interest in the theory of tournaments is the monograph Topics on Tournaments [58] by Moon published in 1968, covering all results on tournaments known up to this time. In particular, three results deserve special mention: in 1934 Rédei [60] proved that every tournament has a directe...

متن کامل

Edge-colouring and total-colouring chordless graphs

A graph G is chordless if no cycle in G has a chord. In the present work we investigate the chromatic index and total chromatic number of chordless graphs. We describe a known decomposition result for chordless graphs and use it to establish that every chordless graph of maximum degree ∆ ≥ 3 has chromatic index ∆ and total chromatic number ∆+1. The proofs are algorithmic in the sense that we ac...

متن کامل

Colouring graphs with bounded generalized colouring number

Given a graph G and a positive integer p, χp(G) is the minimum number of colours needed to colour the vertices of G so that for any i ≤ p, any subgraph H of G of tree-depth i gets at least i colours. This paper proves an upper bound for χp(G) in terms of the k-colouring number colk(G) of G for k = 2p−2. Conversely, for each integer k, we also prove an upper bound for colk(G) in terms of χk+2(G)...

متن کامل

Biclique-colouring verification complexity and biclique-colouring power graphs

Biclique-colouring is a colouring of the vertices of a graph in such a way that no maximal complete bipartite subgraph with at least one edge is monochromatic. We show that it is coNP-complete to check whether a given function that associates a colour to each vertex is a bicliquecolouring, a result that justifies the search for structured classes where the biclique-colouring problem could be ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2013

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2012.08.003