Totally p-Adic Numbers of Small Height in an Abelian Extension of $${{\mathbb {Q}}}$$

نویسندگان

چکیده

Let p be prime, and $${{\mathbb {Q}}}_p$$ the field of p-adic numbers. We say that a number is totally if its minimal polynomial splits completely over . For particular prime degree d, what can we about smallest nonzero height an algebraic d ? If $$d=2$$ , have either $$\tfrac{1}{2} \log \left( \tfrac{1+\sqrt{5}}{2}\right) $$ $$p \equiv 1, 4 \pmod 5$$ 2$$ otherwise. prove, for any congruence condition exists restrict to numbers exist in abelian extension {Q}}}$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

d-VFCSR or vectorial FCSR constructed on totally ramified extension of the p-adic numbers

In this paper, we introduce a vectorial conception of dFCSRs to build these registers over any finite field. We describe the structure of d-vectorial FCSRs and we develop an analysis to obtain basic properties like periodicity and the existence of maximal length sequences. To illustrate these vectorial d-FCSRs, we present simple examples and we compare with those of Goresky, Klapper and Xu.

متن کامل

On Fields of Totally S-adic Numbers

Given a finite set S of places of a number field, we prove that the field of totally S-adic algebraic numbers is not Hilbertian. The field of totally real algebraic numbers Qtr, the field of totally p-adic algebraic numbers Qtot,p, and, more generally, fields of totally S-adic algebraic numbers Qtot,S, where S is a finite set of places of Q, play an important role in number theory and Galois th...

متن کامل

Computable p–adic Numbers

In the present work the notion of the computable (primitive recursive, polynomially time computable) p–adic number is introduced and studied. Basic properties of these numbers and the set of indices representing them are established and it is proved that the above defined fields are p–adically closed. Using the notion of a notation system introduced by Y. Moschovakis an abstract characterizatio...

متن کامل

q-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH p-ADIC q-INTEGRALS AND BASIC q-ZETA FUNCTION

The purpose of this paper is to introduce the some interesting properties of q-Euler numbers and polynomials, cf. [1, 2, 5]. Finally, we will consider the “ sums of products of q-Euler polynomials”.

متن کامل

Analytic Variation of p-adic Abelian Integrals

In Ann. of Math. 121 (1985), 111^168, Coleman de¢nes p-adic Abelian integrals on curves. Given a family of curves X/S, a differential o and two sections s and t, one can de¢ne a function lo on S by lo…P† ˆ R t…P† s…P† oP. In this paper, we prove that lo is locally analytic on S. Mathematics Subject Classi¢cations (2000). Primary 14G20; Secondary 14D10, 11G20. Key words. p-adic Abelian integrals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: La Matematica

سال: 2023

ISSN: ['2730-9657']

DOI: https://doi.org/10.1007/s44007-023-00055-0