Total absolute curvature and embedded Morse numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Embedded Minimal Surfaces of Finite Total Curvature

2 Basic theory and the global Weierstrass representation 4 2.1 Finite total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 The example of Chen-Gackstatter . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Embeddedness and finite total curvature: necessary conditions . . . . . . . 20 2.3.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Pontryagin Numbers and Nonnegative Curvature

We prove that any rational linear combination of Pontryagin numbers that is not a multiple of the signature is unbounded on connected closed oriented manifolds of nonnegative sectional curvature. Combining our result with Gromov’s finiteness result for the signature yields a new characterization of the L-genus.

متن کامل

Curvature, Cones, and Characteristic Numbers

We study Einstein metrics on smooth compact 4-manifolds with an edge-cone singularity of specified cone angle along an embedded 2-manifold. To do so, we first derive modified versions of the GaussBonnet and signature theorems for arbitrary Riemannian 4-manifolds with edge-cone singularities, and then show that these yield non-trivial obstructions in the Einstein case. We then use these integral...

متن کامل

Minimizing Absolute Gaussian Curvature Locally

One of the remaining challenges when reconstructing a surface from a finite sample is recovering non-smooth surface features like sharp edges. There is practical evidence showing that a two step approach could be an aid to this problem, namely, first computing a polyhedral reconstruction isotopic to the sampled surface, and secondly minimizing the absolute Gaussian curvature of this reconstruct...

متن کامل

Murasugi Sums of Morse Maps to the Circle, Morse-novikov Numbers, and Free Genus of Knots

Murasugi sums can be defined as readily for Morse maps to S of (arbitrary) link complements in S as for fibrations over S of (fibered) link complements in S. As one application, I show that if a knot K has free genus m, then there is a Morse map S\K → S (representing the relative homology class of a Seifert surface for K) with no more than 4m critical points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1988

ISSN: 0022-040X

DOI: 10.4310/jdg/1214442160