Toroidalization of generating sequences in dimension two function fields of positive characteristic
نویسندگان
چکیده
منابع مشابه
construction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولUndecidability in Function Fields of Positive Characteristic
We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.
متن کاملUndecidability in Function Fields of Positive Characteristic
We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.
متن کاملinterpersonal function of language in subtitling
translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...
15 صفحه اولHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2007
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2006.07.011