Toroidal integer homology three‐spheres have irreducible SU(2)$SU(2)$‐representations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible Representations for Toroidal Lie-algebras

1 Introduction Let G be simple finite dimensional Lie algebra over complex

متن کامل

Root separation for irreducible integer polynomials

where the latter limsup is taken over the irreducible integer polynomials P (x) of degree d. A classical result of Mahler [10] asserts that e(d) ≤ d− 1 for all d, and it is easy to check that eirr(2) = e(2) = 1. There is only one other value of d for which e(d) or eirr(d) is known, namely d = 3, and we have eirr(3) = e(3) = 2, as proved, independently, by Evertse [9] and Schönhage [11]. For lar...

متن کامل

Knot Floer Homology and Integer Surgeries

Let Y be a closed three-manifold with trivial first homology, and let K ⊂ Y be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered homotopy type of the knot invariant for K. As an illustration of these techniques, we calculate the Heegaard Floer homology groups of non-trivial circle bundles over Riemann surfaces (with coefficie...

متن کامل

A primal all-integer algorithm based on irreducible solutions

This paper introduces an exact algorithm for solving integer programs, neither using cutting planes nor enumeration techniques. It is a primal augmentation algorithm that relies on iteratively substituting one column by other columns that correspond to irreducible solutions of certain linear diophantine inequalities. We prove that various versions of our algorithm are finite. It is a major conc...

متن کامل

Almost All Integer Matrices Have No Integer Eigenvalues

In a recent issue of this MONTHLY, Hetzel, Liew, and Morrison [4] pose a rather natural question: what is the probability that a random n× n integer matrix is diagonalizable over the field of rational numbers? Since there is no uniform probability distribution on Z, we need to exercise some care in interpreting this question. Specifically, for an integer k ≥ 1, let Ik = {−k,−k + 1, . . . , k − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2023

ISSN: ['1753-8424', '1753-8416']

DOI: https://doi.org/10.1112/topo.12275